Mathematics Paper - I: MTH - 111 Matrices

(111101)

P. Pages: 4

îme :	Two H	ours			Max. Marks	s : 60	
Ir	nstructio	ons to	Candidates :			75.7	
	1.	Do no	t write anything on ques	tion pap	er except Seat No.		
	Graph or diagram should be drawn with the black ink pen being						
		for wr	iting paper or black HB p	encil.			
	3.	Stude	nts should note, no supp	olement	will be provided.		
	All questions are compulsory.						
	5.	Figure	es to right indicates full n	narks.			
1. a	a) Attempt any six of the following.					6	
	i)	Inverse of a matrix if it exists, is					
		a) s	quare	b)	unique		
		c) r	not unique	d)	none of these		
	ii)	If A,	B are non-singular matri	ces of th	ne same order then adj(AB)=		
	- (5)		adjA.adjB	b)	adjB.adjA		
		c) a	adj(BA)	d)	none of these		
	iii)	The	The rank of zero matrix is				
		a) (. 190876	b)	n 1 mai gulabada salake (iliki - ili		
		c) -	-1	d)	none of these		
	iv)	[E ₁₃₍	$\left[E_{13(-2)}\right]^{-1}$: The elementary matrix obtained by using elementary				
		trans	formation				
		a)	R ₁₃₍₂₎	b)	R ₁₃₍₋₂₎		
			R ₁₃	d)	none of these		
	v)	A sv	A system AX = B is consistent then $\rho(A)$ $\rho(A, B)$				
	• /	3.0	is equal to	b)	is not equal to		
		0.000	greater than to	d)	none of these		
		٠,	groutor trial to				
	vi)	If $Ax = \lambda x$ then λ is called					
		a)	Eigen value	b)	Eigen vector		
		c)	Characteristic vector	d)	none of these		
कठोर - 006				1		P.T.	

- vii) Inverse or orthogonal matrix is......
 - a) Proper orthogonal
- b) Improper orthogonal

c) Orthogonal

- d) none of these
- viii) If r is rank & s is the index, n is number of variables of quadratic form is negative semidefinite if
 - a) r < n, s = r

b) r < n, s = 0

c) r > n, s = r

- d) none of these
- b) Attempt any six of the following.

6

- i) Define minor of an element of matrix.
- ii) If $A = \begin{bmatrix} 3 \cdot 5 \\ 1 & 2 \end{bmatrix}$ find adj A
- iii) Elementary transformation change the rank of matrix.
- iv) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ find $E'_{21(5)}$.
- v) State Cayley Hamilton theorem.
- vi) Define characteristic value of corresponding matrix A.
- vii) Define Improper orthogonal matrix.
- viii) Write quadratic form in three variables.
- 2. Attempt any six of the following.

12

- i) If A is non-singular matrix of order n & k is a non-zero scalar then prove that $(kA)^{-1} = \frac{1}{k}A^{-1}$
- ii) Let $A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 4 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ find the contactors $A_{31} \& A_{33}$.
- iii) Define rank of the matrix.
- iv) Let A, B be two matrices of same order with $\rho(A) = \rho(B)$ then prove that A ~ B.

- v) Define linearly independent & linearly dependent solution of system AX = 0.
- vi) Find eigen value of matrix $A = \begin{bmatrix} 9 & -7 \\ 3 & -1 \end{bmatrix}$
- vii) Show that an orthogonal matrix A is proper orthogonal if $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$
- viii) Find the matrix of quadratic form $5x^2 + 10xy + 3y^2$
- ix) Define singular & non-singular matrix.
- 3. Attempt any four of the following.
 - i) If A is a non-singular matrix of order n then prove that $adi(adiA) = |A|^{n-2} A$
 - ii) If $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ verify that $A \cdot (adjA) = (adjA) \cdot A = |A| I$.
 - iii) Prove that every non-singular matrix can be expressed as a product of finite number of elementary matrices...
 - iv) Reduce the matrix $A = \begin{bmatrix} 1 & 5 \\ -2 & 1 \\ 3 & 4 \end{bmatrix}$ to its normal form & find $\rho(A)$.
 - v) Examine for consistency the following system of equations -2x + 5z = 2 5x + y + 2z = 32x + y + 7z = -2
 - vi) Prove that product of two orthogonal matrices of same order is orthogonal.
- 4. Attempt any three of the following.
 - i) If A is non-singular matrix & n is natural number then prove that $(A^n)^{-1} = (A^{-1})^n$, $n \in \mathbb{N}$.

12

12

ii) If find inverse of matrix by using adjoint method

where
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 2 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

iii) Determine the value of x that will make the matrix A given of rank 3.

where
$$A = \begin{bmatrix} x & x & 1 \\ 1 & x & x \\ x & 1 & x \end{bmatrix}$$

iv) Investigate for what values of λ & μ the following system of equations

$$x + 3y + 2z = 2$$
$$2x + 7y - 3z = -11$$
$$x + y + \lambda z = \mu$$

have an infinite number of solutions.

 Write down the quadratic form corresponding to the symmetric matrix A where

$$A = \begin{bmatrix} 0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2 \end{bmatrix}$$

5. Attempt any two of the following.

i) Prove that A is matrix of rank r then there exists non-singular matrices P and Q such that $PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ Find non-singular matrices P & Q such that PAQ is in normal form of

A where
$$A = \begin{bmatrix} 2 & 6 \\ 1 & 3 \\ 3 & 9 \end{bmatrix}$$

ii) Define elementary matrix & express a non-singular matrix

$$A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$
 as product of elementary matrices.

- iii) Define:
 - a) Canonical form
- b) Index

c) Signature

- d) Positive definite
- e) Negative definite
- f) Positive semi definite

12