B) Theory of Groups (231103)

Time : Two Hours Max. Marks : 60

li li	nstructio	ons to Candidates :			
	1.	Do not write anything on Graph or diagram should	be drawn w	er except Seat No. ith the black ink pen being	g used
	3	for writing paper or black Students should note, no	supplement	will be provided.	
	4	All questions are compul	sory.		
	5.	Figures to right indicate	full marks.		
	Atto	mpt any six of the follow	ring.		
1. 8	a) Atte			in abunus	
	i)	The order of the identity	element is a b)	ny group is aiways	
		a) 0 c) -1	d)	2	
		C) -1			
	ii)	If G is abelian group w.	t. multiplicat	ion such that b-1a-1ab =	,
		∀a, b∈G.			
		a) a	b)	b	
		c) e	d)	ab	
	iii)	If A and B are two subgrelatively prime then A	roups of a fir	nite group G whose orders	s are
7		a) {e}	b)	A	
		c) B	d)	None of these	
	iv)	H and K be subgroups	of a group G	then HUK is subgroup of	G iff
		a) H = K	b)	HK = e	
		c) either H⊆K or K⊆		None	
	v)	$f: G \rightarrow G'$ be a group	nomomorphis	sm then f is one - one iff k	erf =
	.,	a) {e}	b)	G	
		c) G'	d)	None of these	
	vi)	An isomorphism is an	automorphism	n from group G onto G' if	
	***	a) G=G'	b)	G≠G'	
		c) G'⊆G	d)	None of these	

vii)					ction e d		ect K o	r fewe	r errors	s iff		
	a)						K-1					
	c)	K + 1				d)	K-2					
viii)	The	Ham	mina d	istanc	e betwe	en x =	1011 a	nd v =	1100	is		
H. SAVA	a)		-			b)	3					
	c)	1				d)	4					
Atte	mpt	any s	ix of th	e follo	owing.							6
i)	Def	ine fin	ite abe	lian g	roup.							
ii) *	In g	roup	$\langle Z, + \rangle$,	find 2	2-4							* 3
iii)	Def	ine cy	clic gro	up.								
iv)	Sta	te Lag	range's	s theo	rem.							
v)	Let $f: G \to G'$ is a group homomorphism from G into group G' such that e is identity of G than write down identity of G' .											
vi)	Define homomorphism of groups.											
vii)	Define weight of the word.											
viii)	The minimum distance of (2, 4) encoding function e is 2. How many errors will e defect?											
Atte	mpt	any s	ix of th	e follo	wing.							12
i)		Let $G = \{0, 1, 2\}$ and define * on G by $a*b= a-b $, prepare composition table for *.										

- ii) If G is a group, then prove that (a⁻¹)⁻¹ = a ∀ a ∈ G.
 iii) Define Euler's totient function and find φ(7).
- iv) Let $G = \{1, -1, i, -i\}$ be group under multiplication and $H = \{1, -1\}$ be its subgroup, find all right cosets of H in G.
- v) Define subgroup of a group. Show that the set of odd integers is not a subgroup of group $\langle Z, + \rangle$.

2.

b)

12

- vi) Let ⟨G, *⟩ and ⟨G', *'⟩ be groups with identity elements e and e' respectively. Show that f: G → G' defined by f(a) = e' ∀ a ∈ G is homomorphism.
- vii) Let f: G → G' be a group homomorphism. if e is the identity of G then prove that f(e) is the identity of G'.
- viii) Prove that $\delta(x,y) = \delta(y,x)$ if $x,y \in B^{m}$.
- ix) Compute $\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- Attempt any four of the following.
 - i) Show that set $G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$ is a group under usual multiplication of matrices.
 - ii) If G be a group and a, b, c ∈ G then prove that
 - i) $ab = ac \Rightarrow b = c$
 - ii) $ba = ca \Rightarrow b = c$
 - iii) Prove that every group of prime order is cyclic.
 - iv) Find remainder when 15²⁷ is divided by 8.
 - v) Let ⟨Z, +⟩ be additive group of integers and G = {1, -1, i, -i} be multiplicative group. Show that f: Z → G defined by f(n) = iⁿ ∀ n ∈ Z is a group homomorphism. Find its kernel.
 - vi) Find minimum distance of (2, 4) encoding function e given below: .
 e(00) = 0000, e(10) = 0110, e(01) = 1011, e(11) = 1100 How many errors will e detect?
- Attempt any three of the following.

i) Show that group G is abelian if and only if $(ab)^2 = a^2b^2 \forall a, b \in G$

12

- ii) Let Q⁺ be set of all positive rationals. For a $b \in Q^+$, define $a * b = \frac{ab}{7}$ show that $\langle Q^+, * \rangle$ is an abelian group.
- iii) Let H be a subgroup of a group G and for $g \in G$ define gH_9^{-1} by $gH_9^{-1} = \left\{gh_9^{-1} \middle/ h \in H\right\}$. Show that gH_9^{-1} is subgroup of G.
- iv) Let $\langle IR, + \rangle$ be a group of reals and $\langle IR^+, \cdot \rangle$ is a group of positive reals. Define $f:IR^+ \to IR$ by $f(x) = \int\limits_1^x \frac{1}{t} dt$, $\forall \, x \in IR^+$. Show that f is an isomorphism.
- Let e be an (2, 5) encoding function defined by e(00) = 00000,
 e(01) = 01110, e(10) = 10101, e(11) = 11011 show that e is a group code.
- Attempt any two of the following.

12

- i) Prove that nonempty subset H of a group G is a subgroup of G if and only if ∀ a,b ∈ H ⇒ ab⁻¹ ∈ H.
- ii) Let $f: G \to G'$ be a group homomorphism and 0(a) is finite then prove that f is one one if and only if $0(f(a)) = 0(a) \ \forall \ a \in G$.
- iii) Determine the coset leaders for $N = e_H(B^m)$ for given parity check matrix $H = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ and also compute syndrome for each coset

leader. Decode word 0101 relative to maximum likelihood decoding function.

216 / 3105