

## MATHEMATICS PAPER - I : MTH - 111 Matrices (111101)

| P. Pages: | 4 |
|-----------|---|
|-----------|---|

Time: Two Hours

Max. Marks: 60

6

| 140 | SERVING | 00000000 | Water Street | 2000 | Carlo Control | 200 | 400 |     |   |
|-----|---------|----------|--------------|------|---------------|-----|-----|-----|---|
| 1   | nsi     | ruct     | ions         | to   | Can           | die | 12  | BS. | 8 |

- 1. Do not write anything on question paper except Seat No.
- Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- 3. Students should note, no supplement will be provided.
- 4. All questions are compulsory.
- 5. Figures to right indicates full marks.

| 1. | a)    | Att                                         | empt any six of the following                                              | ng.                 |                               |  |  |
|----|-------|---------------------------------------------|----------------------------------------------------------------------------|---------------------|-------------------------------|--|--|
|    | - 276 | i)                                          |                                                                            | 170                 | and k is non-zero scalar then |  |  |
|    |       |                                             | a) k <sup>n</sup>  A                                                       | b)                  | k <sup>n-1</sup>  A           |  |  |
|    |       |                                             | c) k A                                                                     | d)                  |                               |  |  |
|    |       | ii)                                         | If A is a non-singular matr<br>a) singular<br>c) not square                | ix of o<br>b)<br>d) |                               |  |  |
|    |       | iii)                                        | If A~B then order of B is . a) equal to order of A c) less than order of A | b)                  | greater than order of A       |  |  |
|    |       |                                             | c) less than order of A                                                    | a)                  | None of these                 |  |  |
|    |       | iv)                                         | Eij(k): The elementary material transformation                             | atrix of            | btained by using elementary   |  |  |
|    |       |                                             | a) Rij(k)                                                                  | b)                  | Rij(-k)                       |  |  |
|    |       |                                             | c) Rij                                                                     | d)                  | None of these                 |  |  |
|    |       | v) A system AX = B is consistent iff ρ(A) = |                                                                            |                     |                               |  |  |
|    |       |                                             | a) ρ(A)                                                                    | b)                  | ρ(Β)                          |  |  |

c) p[A, B)

d)

None of these

a) characteristic equation b) Eigen equation c) non-characteristic equation d) None of these vii) An orthogonal matrix A is called proper orthogonal of |A| = ...... b) a) 0 d) None of these c) -1 viii) If r is rank, S is index, n is number of variables of quadratic form is positive definite if ........ r > n > s b) a) r = n = s d) None of these c) r = s & n > s 6 b) Attempt any six of the following. Define Inverse of matrix. 1) 「1 −1 0 If A = 2 0 1 find cofactor A23 ii) Define equivalent matrices. iv) Let  $I = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$  find  $E'_{23(-5)}$ v) Define non-trivial solution of system of equation AX = 0. vi) Define eigen value of corresponding matrix A. vii) Define congruent matrix. viii) Define rank of quadratic form. 12 Attempt any six of the following.

vi) |A-λ1| = 0 is called ..... of A

i)

2.

Define Adjoint of matrix & state formula for cofactor Aij.

ii) If A is non-singular matrix & B, C are matrices such that

AB = BC show that B = C.

iii) Define normal form of matrix.

- iv) Find rank of matrix A if A =  $\begin{bmatrix} 2 & 3 & 1 \\ -1 & 2 & 1 \\ -2 & 4 & 1 \end{bmatrix}$
- v) Define Linearly dependent & linearly independent solution of system of AX = 0.
- vi) Find Eigen value of matrix  $A = \begin{bmatrix} 3 & -5 \\ 7 & 8 \end{bmatrix}$
- vii) Verify the matrix A is orthogonal where  $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$
- viii) Find the matrix of the quadratic form  $2x^2 + 6xy + y^2$ .
- ix) Define skew symmetric matrix & symmetric matrix.
- 3. Attempt any four of the following.

12

- i) Prove that Inverse of a matrix if it exists, is unique.
- ii) Let  $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$

show that A(adj A) is an identity matrix.

- iii) If A is matrix of rank r then there exists a non-singular matrix P & Q such that  $PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$
- iv) Reduce the matrix  $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$  to its normal form & find  $\rho(A)$ .
- v) Examine for consistency the following system of equations.
   x+z=2
   -2x+y+3z=3

$$-3x + 2y + 7z = 4$$

vi) Prove that the determinant of orthogonal matrix is ±1.

Attempt any three of the following.

12

- For any square matrix A, prove that A(adj A) = (adj A) A = | A | I
- ii) Find Inverse of the matrix A, if it exist where  $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$
- iii) Compute the following matrix for the elementary matrices of order 3  $\left[\mathbb{E}_{3(-2)}\right]^{-1}\left[\mathbb{E}_{13(2)}\right]\left[\mathbb{E}_{23(-1)}'\right]$
- iv) Show that the system of equation ax + by + cz = 0 bx + cy + az = 0 cx + ay + bz = 0 has non-trivial solution iff a+b+c = 0 or a=b=c.
- v) Find the matrix of quadratic form  $x_1^2-2x_2^2-3x_3^2+4x_1x_2+6x_1x_3-8x_2x_3 \text{ Also find the rank.}$
- 5. Attempt any two.

12

- ii) State the Cayley Hamilton theorem and verify that for the matrix  $A = \begin{bmatrix} 1 & 2 & 0 \\ -3 & -2 & 1 \\ 1 & 3 & -1 \end{bmatrix}$
- iii) Reduce the quadratic form  $x_1^2+2x_2^2+2x_1x_2-x_1x_3+2x_2x_3\\ \text{to its canonical form, find rank, index \& signature.}$