कर्ता - 036 / 037

Seat Number

MATHEMATICS PAPER - II: MTH - 232 (A) Topics in Algebra (23116) / (B) Computational Algebra (23117)

P. Pages: 4

(A) Topics in Algebra (23116)

Time: Two Hours

Max. Marks: 40

Instructions to Candidates:

- Do not write anything on question paper except Seat No.
- Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- 3. Students should note, no supplement will be provided.
- 4. All questions are compulsory.
- 5. Figures to right indicate full marks.

Attempt any eight of the following :

8

- a) Define binary operation on G.
- b) Define cyclic group.
- c) Define Kernel of homomorphism.
- d) For what value of n, Z_n is an integral domain?
- e) What is order of an element '1' of additive group Z₆?
- f) State Euler's theorem.
- g) Let (IR, +) is group of real under addition and (IR⁺, ·) the group of positive reals under multiplication such that f:IR → IR⁺ defined by f(x) = 2^x, ∀x∈IR. find kerf.
- h) Define commutative ring.
- i) The generator of the multiplicative group G = {1, -1} is ----.
- j) Is intersection of any two sub groups is subgroup?

2. a) Attempt any two of the following:

6

i) Show that Q^+ , the set of positive rationals is an abelian group under $a * b = \frac{a^b}{3}$, $\forall a,b \in Q^+$.

		ii)	Let G be a group and $a,b \in G$. Prove that the equation $y_a = b$ have unique solution in G.	
		iii)	Prove that order of every element in a finite group is finite.	
	b)	 b) If G is a group prove that every element of G has unique inve in G. 		- 2
3.		Attempt any two of the following :		8
		i)	Prove that every group of prime order is cyclic.	
		ii)	Prove that a non empty subset H of a group G is subgroup of G if and only if $a,b\in H\Rightarrow ab^{-1}\in H$.	
		iii)	Find the remainder obtained when 8 ⁴⁰¹ is divided by 13.	
4.	a)	Atte	empt any two of the following :	6
		i)	Prove that the homomorphic image of cyclic group is cyclic.	
		ii)	Let $f: G \rightarrow G'$ be a group homomorphism, prove that, if H is subgroup of G then $f(H)$ is subgroup of G' .	
		ili)	Let G be a group and $f: G \rightarrow G$ be a map defined by $f(x) = x^{-1}$ $\forall x \in G$. Prove that, if G is abelian then f is an isomorphism.	
	b)	Let a gr	$(\mathbb{Z},+)$ the group of integers under addition and $G=\{2n/n\epsilon\mathbb{Z}\}$ coup under multiplication. Show that $f\colon\mathbb{Z}\to G$ defined by	2
		f(n)	$=2^n$, \forall $n \in \mathbb{Z}$ is homomorphism.	
5.	a)	Let	(R,+,.) be a ring and a,b,c∈R prove that i) a.0 = 0.a = 0	8
			ii) a(-b) = -ab = (-a) · b iii) (-a)(-b) = ab	
			iv) (a-b)c = ac-bc.	
	-1	Dec	OR	
	a)		ve that :	
		1)	Every finite integral domain is a field.	4

ii) Every Boolean ring is a commutative ring.

(B) Computational Algebra (23117)

Time: Two Hours

Max. Marks: 40

Instructions to Candidates:

- 1. Do not write anything on question paper except Seat No.
- Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- Students should note, no supplement will be provided.
- 4. All questions are compulsory.
- 5. Figures to right indicate full marks.
- Use of calculator is not allowed.

Attempt any eight of the following :

8

- a) Obtain φ(7) where φ is Eulertotient function.
- b) In the group $(Z_{12} + 12)$ find $O(\overline{3})$.
- c) Define subgroup.
- d) State Lagranges theorem for the subgroup H of a group G.
- e) Fill in the blanks: $3^{12} = 1 \pmod{\dots}$
- f) Define Kernel of Homomorphism.
- g) Let (IR +) be the additive group of reals and (IR⁺.) be multiplicative group of positive reals if f:R → IR⁺ defined as f(x) = 10^x ∀ x ∈ IR then show that f is a homomorphism.
- h) Let $w_1 = 101011$ and $w_2 = 010100$ the find hamming distance $\delta(w_1 w_2)$.
- i) Choose the correct option
 An (m, n) encoding function can detect k or fewer errors iff minimum distance minimum distance of e is ----- K+1.
 - i) at most

ii) at least

iii) exactly

- iv) never
- j) Define (n, m) decoding function.

2. Attempt any four.

8

- Let Q^+ be the set of all positive rationals for $a, b \in Q^+$ define $a * b = \frac{ab}{10}$ then show that $(Q^+ *)$ is a group.
- Let M₂ be the set of all 2×2 non zero matrices then check whether M₂ forms a group under multiplication or not. Justify your answer.
- iii) Let G be a group and a∈G be any element then show that 0(ā¹) = 0(a).

iv) Show that the group G is abelian iff $(ab)^2 = a^2b^2 \forall a, b \in G$ Let G be a group, $a \in G$ and $n \in Z$ then prove that $(a^n)^{-1} = (a^{-1})^n$ vi) If G is a group such that a² = e ∀a ∈ G then show that G is abelian. 3. a) Attempt any two. 6 A nonempty subset H of a group G is subgroup of G iff ab⁻¹∈H ∀a.b∈H Prove that every subgroup of a cyclic group is cyclic. iii) Using Fermat's theorem find the remainder obtained when 33¹⁹ is divided by 7. b) Prove that any two right cosets of H in G are either identical or 2 disjoint. 4. 8 Attempt any two Let G = (Z +) be the additive group of integers and $G' = \{1, -1\}$ be group under multiplication. If $f: Z \to G'$ is defined as $f(n) = \begin{cases} 1 & \text{if n is even} \\ -1 & \text{if n is odd} \end{cases}$ then prove that f is onto homomorphism what is ker(f)? ii) Let f:G→G' be a group homomorphism then prove that f is one-one iff $ker(f) = \{e\}$. iii) Prove that every finite cyclic group of order n is isomorphic to $\langle Z_n +_n \rangle$. 5. Let $x,y,z \in B^m$ then show that 4 $\delta(x,y) = \delta(y,n)$ ii) $\delta(x,y) \ge 0$ iii) $\delta(x, y) = 0$ iff x = yiv) $\delta(x,y) \le \delta(x,z) + \delta(z,y)$ b) Consider (2 4) group code defined by e(0 0) = 0000 e(1 0)=1000 4 e(0.1) = 0111 e(11) = 1111 decode the following words relative to a maximum likelihood decoding function i) 0011 ii) 1011 iii) 1111 iv) 1001. a) Let $e:B^m \to B^n$ be a group code then prove that minimum distance 4 of e is minimum weight of non zero code word. 0 1 17 4 Let H= 1 0 0 be a parity check matrix decode the word 10100 0 1 0 0 0 1 relative to maximum likelihood decoding function associated with

कर्ता - 036 / 037

eH.