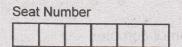
कुमकुम - 048 / 049



MATHEMATICS PAPER - II: MTH-232

- (A) Topics in Algebra (New) (23116) OR /
- (B) Computational Algebra (New) (23117)

P. Pages: 7

(A) Topics in Algebra (New) (23116) OR

Time: Two Hours Max. Marks: 40

Instructions to Candidates:

- 1. Do not write anything on question paper except Seat No.
- 2. Answer sheet should be written with blue ink only. Graph or diagram should be drawn with the same pen being used for writing paper or black HB pencil.
- 3. Students should note, no supplement will be provided.
- 4. All questions are compulsory.
- 5. Figures to right indicate full marks: The state of the
- 1. Attempt any eight of the following.

- a) Which is identity element for addition in Z_n?
- b) Let $G = \{a^1, a^2, a^3, \dots, a^{11}, a^{12} = e\}$ be a group find $O(a^3)$,
- c) Define left coset of subgroup H of group G.
- d) Prepare additive composition table for $H = \{\overline{0}, \overline{5}, \overline{10}\}$ with modulo 12.
- e) Let $F:G \to G'$ be a group homomorphism. If $x \in \ker f$ then $f(x) = \dots$ for $x \in G$.
- f) Define group homomorphism.
- g) Define field.
- h) Define Boolean ring.
- i) State Lagranges theorem for finite group.

j) Find generators of $G = \{1, -1, i, -i\}$ under multiplication of complex number.	
2. a) Attempt any two of the following.	
i) If G is group then prove that	
1) Identity element of G is unique.	
2) Every element of G has unique inverse in G.	
ii) In the group $\langle z_7', x_7 \rangle$ find	
i) $(\overline{4})^{-3}$ ii) $(\overline{4})^{2}$	
iii) Show that $Q = IR - \{-1\}$ is an abelian group under the binary operation $a * b = a + b + ab$, $\forall a, b \in G$.	
b) Show that $\langle z_5, +_5 \rangle$ is cyclic group.	2
3. Attempt any two of the following.	8
a) Show that $nZ = \{nr : r \in z\}$ is a subgroup of $\langle z, + \rangle$ where $n \in \mathbb{N}$.	•
 b) Let A, B be subgroups of a finite group G. Whose orders are relatively prime show that A ∩ B = {e}. 	
c) Show that every proper subgroup of group of order 39 is cyclic.	
A a) Attempt any two of the following.	6
 i) Consider ⟨IR, +⟩ a group of reals under usual addition. Show that f:IR → IR defined by f(x)= 3x ∀x∈IR is group homomorphism. Find kerf. 	
ii) Prove that every infinite cyclic group is isomorphic to $\langle z, + \rangle$ the group of integers under addition.	
iii) Let $f: G \to G'$ be a group homomorphism. If H' is a subgroup of G' then prove that $f^{-1}(H')$ is a subgroup of G.	
b) Define auto morphism of groups.	2

5. Let $\langle R, +, \cdot \rangle$ be a ring and a, b, $c \in R$ prove that

8

- i) $a \cdot 0 = 0 \cdot a = 0$
- ii) a(-b) = -(ab) = (-a)b
- iii) (-a)(-b) = ab
- iv) a(b-c)=ab-ac
- v) (a-b)c=ac-bc
- vi) (-1)a = -a if $1 \in \mathbb{R}$

OR

i) Prove that every field is an integral domain.

4

ii) Prove that every Boolean ring is a commutative ring.

4

(B) Computational Algebra (New) (23117)

Time : Two Hours Max. Marks : 40

Instructions to Candidates:

- 1. Do not write anything on question paper except Seat No.
- Answer sheet should be written with blue ink only. Graph or diagram should be drawn with the same pen being used for writing paper or black HB pencil.
- 3. Students should note, no supplement will be provided.
- 4. All questions are compulsory.
- 5. Figures to the right indicate full marks.
- 6. Use of calculator is not allowed.
- 1. Attempt any eight of the following.

8

- a) Define order of a group.
- b) If ϕ is Euler's totient function then find $\phi(g)$.
- In the group (z +) of all integers explain whether the set of all odd integers is subgroup of (z +) or not.
- d) Let $H = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ be the subgroup of $(z_{12} + z_1)$ then find the coset $H + \overline{4}$.
- e) State Fermat's theorem.
- f) Define an Isomorphism.
- g) Consider (z +) be the additive group of integers and $G = \{1, -1, i, -i\}$ be a group under multiplication. if we define $\phi : Z \to G$ as $\phi(n) = i^n \forall n \in Z$ then find kernel of ϕ .

- h) Define minimum distance of an encoding function $e: B^m \to B^n \ m < n$.
- i) Define a group code
- j) Fill in the blanks An (m, n) encoding function can detect k or fewer errors iff minimum distance of e is at least
- 2. a) Attempt any two of the following.

6

- i) Show that $G = IR \{1\}$ is an abelian group under the binary operation a * b = a + b ab $\forall a, b \in G$.
- ii) If G is a group such that $a^2 = e \forall a, b \in G$ then show that G is abelian.
- iii) In the group (z'₇ x₇) find
 - a) $(\bar{3})^2$
- b) $(\overline{4})^{-3}$
- $0(\overline{3})$
- b) In any group G prove that the identity element is unique.

2

Attempt any two of the following.

8

- i) Prove that every subgroup of a cyclic group is cyclic.
- ii) Let H be the subgroup of a group G prove that $H_a = H_b$ iff $ab^{-1} \in H$.
- iii) Find remainder obtained when 3⁵⁴ is divided by 11.
- 4. a) Attempt any two of the following.

6

i) Let G be an abelian group and $f: G \to G$ be a map defined by $f(n) = x^{-1} \quad \forall x \in G$ then prove that f is an isomorphism.

- ii) Let f:G→G' be a group homomorphism then define kernel of f and show that ker (f) is subgroup of G.
- iii) Prove that homomorphic image of a cyclic group is cyclic.
- b) Consider (IR+) be a group of reals under usual addition and $g: \mathbb{R} \to \mathbb{R}$ defined by $g(n) = x + 2 \quad \forall x \in \mathbb{R}$ then check whether g is a homomorphism or not.
- 5. a) Let e be an (3 5) encoding function defined by e(000) =00000 e(100) = 01010 e(001) = 11110 e(101) = 10100 e(010) = 01101 e(110) = 00111 e(011) = 10011 e(111) = 11001

 Show that e is a group code. How many errors will be detect.
 - b) Compute:

 [1 0 0] [0 1 1]
 - i) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \oplus \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - ii) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

OR

a) Let
$$H = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

be a parity check matrix determine the (2, 5) group code.

b) Consider the (2,4) group code defined by $e(00) = 0000 \ e(10) = 1000 \ e(01) = 0111 \ e(11) = 1111. \ Decode the$ following words relative to maximum likelihood decoding function.

i) 0011

ii) 1011

iii) 1111

iv) 1001
