Seat No.

केंद्रक - 039

MATHEMATICS PAPER - II (NEW) (12116) MTH-122 Algebra

P. Pages: 2

Time: Two Hours

Max. Marks: 40

Instructions to Candidates:

- Do not write anything on question paper except Seat No.
- Answersheet should be written with blue ink only. Graph or diagram should be drawn with the same pen being used for writing paper or black HB
- Students should note, no supplement will be provided. 3.
- All questions are compulsory.
- Figures to the right indicate full marks. 5.
- Use of calculator is not allowed. 6.
- Attempt any eight of the following. 1.
 - State division algorithm theorem. i)
 - Define relatively prime integers. ii)
 - Define Equivalence relation. iii)
 - State Euler's theorem. iv)
 - If P is prime and $a^2 \equiv b^2 \pmod{p}$. Show that either $\frac{P}{a+b}$ or $\frac{P}{a-b}$. V)
 - State Descarte's rule of sign for positive root. vi)
 - Change the signs of the roots of the equation $x^7 + 7x^6 + 3x^4 4x^2 3x + 2 = 0$.
 - viii) Find the equation whose roots are the reciprocals of the roots of $x^4 - 5x^3 + 7x^2 + 3x - 7 = 0$.

Fill in the blanks of the following.

- ix) If α , β , γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$ then $\sum \alpha = \dots$ and $\sum \alpha \beta = \dots$
- To remove the second term from the equation $x^4 + 20x^3 + 143x^2 + 430x + 462 = 0$, the roots are diminished by
- Attempt any two of the following. 2.

If p is prime and a, b are integers such that p_{ab} , Prove that either p/a or p/b

6

- Find (27 > 2, 2 > 3) and express it in the form 27 > 2m + 2 > 3n where m, n are integers.
- iii) Show that $\sqrt{5}$ is not rational number.
- b) If a/b and b/c, Prove that a/c where a,b,c ∈ Z.

2

3. Attempt any two of the following.

8

- State and prove Fermat's theorem.
- Prepare the composition table for addition and multiplication of residue classes modulo 7.
- iii) Let A be the set of all integers. Define the relation R on A by xR_y if "x y is an even integer" x, y ∈ A. Prove that R is an equivalence relation.
- 4. a) Attempt any two of the following.

6

- i) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$. Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.
- ii) Solve the equation $x^3 3x^2 + 4 = 0$ if two its roots are equal.
- iii) Find the condition that the cubic equation $x^3 + px^2 + qx + r = 0$. Should have two roots α , β connected by the relation $\alpha\beta + 1 = 0$.
- b) If α , β , γ are the roots of the cubic equation $x^3 + px^2 + qx + r = 0$, Find $\sum \alpha^2$.
- 5. a) i) Reduce the cubic equation $2x^3 2x^2 + 6x 1 = 0$, to the form $Z^3 + 3HZ + G = 0$.
 - ii) Solve the equation $x^3 21x 344 = 0$ by Carden's method.

4

OR

- a) i) Remove the fractional coefficients from the equation $x^3 \frac{5}{2}x^2 \frac{7}{18}x + \frac{1}{108} = 0$. 4
 - ii) Find the equation whose roots are the roots of $x^4 5x^3 + 7x^2 17x + 11 = 0$ each diminished by 4.

4
