MATHEMATICS PAPER - I: MTH-111

Matrices
(111101)

P. Pages: 4

Time: Two Hours

Max. Marks: 60

Instructions to Candidates:

1. Do not write anything on question paper except Seat No.

- Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- 3. Students should note, no supplement will be provided.
- 4. All questions are compulsory.
- 5. Figures to right indicates full marks.

1.	a)	Attempt any	six of	the	following
----	----	-------------	--------	-----	-----------

6

- i) If A is a square matrix and $|A| \neq 0$ then $A^{-1} = -----$
 - a) $\frac{1}{|A|}$ (adj A)
- b) $|A| \frac{1}{adjA}$
- c) | A | (adj A)
- d) None of these
- ii) If A is non singular matrix of order n then adj A is ----- matrix.
 - a) not square
- b) singular
 - c) non-singular
- d) None of these
- iii) If every minor of matrix A of order 7 is zero then $\rho(A) < ----$.
 - a) 0

b) '

c) 6

- d) None of these
- iv) The inverse of elementary matrix $E_{\xi}(k)$ is----
 - a) $E_{\xi}(-k)$

b) $E_{\xi}\left(\frac{1}{k}\right)$

c) $E'_{\xi}(k)$

- d) None of these
- v) If $\rho(A) = \rho(AB) = n$, the number of unknows then Ax = B possesses a ----- solution.
 - a) Infinite

b) Unique

c) Trivial

d) None of these

					गज - 00				
	vi)	If λ is non zero eigen value of a non singular matrix A then eigenvalue of A^{-1} is							
		a) $\frac{1}{\lambda}$	b)	$-\frac{1}{\lambda}$					
		c) λ	d)	None of these					
	vii)	An orthogonal matrix A is called	prop b)	per orthogonal if A =					
		a) 1 c) -1	d)	None of these					
	viii)	A quadratic form is said to be no a) r = n, s = o c) r < n, s = o	b)	r = s = n None of these					
Attempt any six of the following.									
		[1 0 2]		olescon to the control of					
	i)	If $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & 1 \\ 3 & 1 & 0 \end{bmatrix}$ find minor of a_{11} and a_{23} .							
	ii)) Define cofactor of an element of a matrix.							
	iii)) What is the inverse of elementary matrix E ₃₂ (-5).							
	iv)	Define equivalent matrices.							
	v)	Define eigen value of corresponding matrix A.							
	vi)	State the condition that the non-homogeneous system Ax = B is consistent.							
	vii)	vii) Find the matrix of quadratic form $Q = x_1^2 + 6x_1x_2 - 12x_1x_3 + 4x_3^2$							
	viii)	viii) Prove that the matrix $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ is orthogonal.							
Attempt any six of the following.									

If A is non singular matrix then prove that $(A^1)^{-1} = (A^{-1})^1$.

If A and B are symmetric matrices then prove that (AB + BA) is symmetric matrix. ii)

गज - 001

2.

b)

12

- iii) Define rank of matrix.
- iv) If $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then compute $E_{12} \cdot E'_{13}$ (-1)
- Define Linearly dependent & Linearly independent solution of system of Ax = 0.
- vi) Find eigen value of matrix $A = \begin{bmatrix} 3 & -5 \\ 7 & 8 \end{bmatrix}$
- vii) Show that the matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is proper orthogonal.
- viii) Define canonical form of quadratic form.
- ix) Prove that Inverse of matrix if it exist is unique.
- 3. Attempt any four of the following.
 - i) Let $A = \begin{bmatrix} -3 & 1 & 0 \\ 2 & -2 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ show that $A \cdot (adj A)$ is null matrix.
 - ii) Verify that $(AB)^{-1} = B^{-1}$, A^{-1} , where $A = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$
 - iii) Reduce the matrix $A = \begin{bmatrix} 1 & 2 \\ -2 & -4 \\ 3 & 6 \end{bmatrix}$ to its normal form hence find $\rho(A)$
 - iv) Determine the value of x so that the matrix $A = \begin{bmatrix} x & x & 1 \\ 1 & x & x \\ x & 1 & x \end{bmatrix}$ is of rank 3.
 - v) Investigate for what values of λ and μ , the system of equation x+3y+2z=2, 2x+7y+3z=-11, $x+y+\lambda z=\mu$ have no solution.
 - vi) If A is an orthogonal matrix then prove that $A^1 = A^{-1}$.

12

Attempt any three of the following.

i) If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 then find A^{-1} .

- ii) If $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix}$ verify that $adj(AB) = (adj B) \cdot (adj A)$.
- iii) Examine for nontrivial solutions x+y+z=0, 4x+y=0, 2x+2y+3z=0
- iv) Find the rank of a matrix A where

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -3 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

v) Write down the quadratic form corresponding to the matrix.

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & -2 \\ 3 & -2 & 4 \end{bmatrix}$$

5. Attempt any two.

4.

- i) If A is matrix of rank r then prove that there exist two nonsingular matrices P and Q such that $PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$
- ii) Verify Cayley Hamiton theory for $A = \begin{bmatrix} 1 & 2 & 0 \\ -3 & -2 & 1 \\ 1 & 3 & -1 \end{bmatrix}$
- iii) Obtain the linear transformation of the quadratic form $q=x_1^2-x_2^2+x_3^2-2x_1x_2+4x_2x_3 \text{ under the linear transformation.}$ $x_1=y_1+y_2+y_3$ $x_2=y_2-y_1$ $x_3=2y_3$
