

MATHEMATICS PAPER - I (NEW) : MTH- 241 Complex Analysis (24115)

P. Pages: 3

Time: Two Hours

Max. Marks: 40

Instructions to Candidates:

Do not write anything on question paper except Seat No.

- Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- 3. Students should note, no supplement will be provided.
- 4. All questions are compulsory.
- 5. Figures to right indicate full marks.
- Attempt any eight of the following.

8

- a) Find the modulus of $\frac{1}{1+i}$
- b) Find the value of $\left| \frac{z-1}{1-\overline{z}} \right|$
- c) Evaluate $\lim_{z\to 0} \frac{\overline{z}}{z}$ along real axis.
- d) Define f'(z₀).
- e) State Cauchy Riemann equations.
- f) State the series for sinz.
- g) State Cauchy Goursat theorem.
- h) Find the poles of $f(z) = \frac{z-1}{(z^2-3z+2)(z-3)}$ in complex plane.
- i) Find the zeros of $f(z) = z^2 5z + 6$.

- j) If $z = e^{i\theta}$ then find the value of $\cos \theta$ in terms of z.
- 2. a) Attempt any two of the following.

6

- i) Find the $n n^{th}$ roots of z = x + iy.
- ii) Simplify $\frac{(\cos 2\theta i\sin 2\theta)^{7} (\cos 3\theta + i\sin 3\theta)^{-5}}{(\cos 4\theta i\sin 4\theta)^{-12} (\cos 5\theta i\sin 5\theta)^{-6}}$
- iii) If $|z_1| = |z_2| = |z_3| = 5$ and $z_1 + z_2 + z_3 = 0$ then prove that $\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0$
- b) Solve $x^2 1 = 0$.

2

Attempt any two of the following.

8

- a) If w = f(z) = u(x, y) + iv(x, y) be an analytic function at a point z = x + iy and the partial derivatives of u and v exist then prove that $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$
- b) Discuss the continuity of the function

$$f(z) = \frac{z^2 + 4}{z - 2i} \text{ if } z \neq 2i$$

= 3 + 4i \text{ if } z = 2i
at z = 2i.

- Find the analytic function f(3) = u = iv whose imaginary part is e^x(xsiny+ycosy).
- 4. a) Attempt any two of the following.

6

i) State Cauchy's integral formula for $f(z_0)$ and hence obtain $\int_C \frac{z^3}{z-2i} dz$ where C is the circle |z-2|=5.

- ii) Using Cauchy Goursat theorem obtain the value of $\int_C e^z dz$ where C is the circle |z|=1 and hence deduce that $\int_0^{2\pi} e^{\cos\theta} \cdot \cos(\theta + i\sin\theta) d\theta = 0$
- iii) Evaluate $\int_{|z-1|=z} \frac{\sin \pi z}{(z-1)^2} dz$
- b) Write the expansion of $(1-z)^{-1}$ for |z| < 1.

2

5. a) State and prove Cauchy's residue theorem.

- 4
- Compute the residue at double pole of $f(3) = \frac{z^2 + 2z + 3}{(z-i)^2(z+4)}$

OR

Find the residue of $\frac{ze^z}{(z-1)^3}$ at its pole.

4

b) Use contour integration evaluate $\int\limits_{0}^{2\pi} \frac{d\theta}{5+3\cos\theta}$

4
