Seat Number

PHYSICS PAPER - II: PHY - 122 Theoretical Physics (12126)

P. Pages: 3

Time: Two Hours

Max. Marks: 40

Instructions to Candidates:

- Do not write anything on question paper except Seat No.
- 2. Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- Students should note, no supplement will be provided.
- 4. All questions are compulsory and carry equal marks.
- Figures to the right indicate full marks.
- Draw necessary diagrams wherever necessary.
- Use of logarithmic table or electronic calculator is allowed.
- 8. Symbols have their usual meanings.

Attempt any eight of the following, select correct option. 1.

i)
$$i^{12} + i^8 = \dots$$

a) i²⁰

c) zero

ii) If
$$\frac{\partial f}{\partial y} = x^2$$
 (2xy + 3), then function F (x, y) is

- a) $x^3y^2 + 3x^2y 6$ b) $x^3y^2 3x^2y + 6$
- c) $xy(x^2y+3)$
- d) $xy(x^2y-3)$

iii) The divergence of curl of A is

a) zero

b)

c) positive

Negative d)

The cross product of 2 parallel or Antiparallel vectors is always

a) Infinite

b) one

c) zero

180° d)

The complex conjugate of $\cos \theta + i \sin \theta = e^{i\theta}$ is

- a) $\cos \theta + i \sin \theta = e^{-i\theta}$
- b) $\cos \theta i \sin \theta = e^{-i\theta}$
- c) $\cos \theta i \sin \theta = e^{i\theta}$ d) $\cos \theta + i \sin \theta = -e^{i\theta}$

The curl of a gradient of a scalar of is represented as

a) $\overrightarrow{\nabla} \times \overrightarrow{\nabla} \phi$

b) $\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \phi$

c) → → →

d) $\nabla \times \phi \nabla$

vii) The scalar product of two vectors is simply negative of product of magnitudes of vectors.

a) Parallel

- b) Antiparallel
- c) Perpendicular
- d) Planer

viii) If $\frac{\partial^2 F}{\partial x \partial x} = f_{xx}$ then $\frac{\partial^2 F}{\partial y \partial x} = ...$

fyx

a) f_{xy}c) -f_{xy}

ix) $\sec \theta = ---$

a) $\frac{2}{e^{i\theta} + e^{-i\theta}}$

- b) $\frac{2}{e^{i\theta} e^{+i\theta}}$
- c) $\frac{2}{e^{-i\theta} e^{+i\theta}}$

An irrotational vector field is ----- field.

- a) Non conservative field
- b) conservative field
- c) solenoidal field
- d) None of the above

2. Attempt any four of the following. 8

- Define a complex number.
- Find the multiplication of 7+5i & -2+i.
- What is the formula for total differential dF, if F=F(x,y)?
- Define del operator. d)
- State the geometrical interpretation of scalar triple product.

- f) What are possible inferences if the divergence at a point is negative and zero?
- 3. Attempt any two of the following.

8

- a) Find the modulus and argument of $Z = \frac{3+2i}{3-2i}$
- b) Using the idea of total differentials find the approximate value of $\sqrt{(3.98)^2 + (2.99)^2}$.
- c) Find the angle between $\overrightarrow{A} = 3\hat{i} + 2\hat{j} + 3\hat{k} \& \overrightarrow{B} = \hat{i} \hat{j} + 2\hat{k}$.
- 4. a) Attempt any two of the following.

6

- i) Evaluate $\left[\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right] \left[\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}\right]^2$
- ii) If $F(x,y) = x^2 + y^2$, where $x = r\cos\theta \& y = r\sin\theta$ find $\frac{\partial F}{\partial r}$ and $\frac{\partial F}{\partial \theta}$.
- iii) If $\overrightarrow{A} = x^2z\hat{i} + xy^2z\hat{j} 3yz^2\hat{k}$ then find curl \overrightarrow{A} at the pt. (1, 1, 1).
- b) Prove that $\overrightarrow{\nabla} \cdot \overrightarrow{r} = 3$ where \overrightarrow{r} is the position vector.

2

Attempt any one of the following.

8

- i) Define scalar tripple product and show that the scalar triple product represents the volume of a parallelepiped, whose edges represents the given three vectors.
- ii) Show that $\overrightarrow{\nabla} \cdot \left(\phi \overrightarrow{A} \right) = \overrightarrow{\nabla} \phi \cdot \overrightarrow{A} + \phi \left(\overrightarrow{\nabla} \cdot \overrightarrow{A} \right)$.
