113 (B) Numerical Methods (111204)

Time: Two Hours

Max. Marks: 60

Instructions to Candidates:

- 1. Do not write anything on question paper except Seat No.
- 2. Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- Students should note, no supplement will be provided.
- All questions are compulsory.
- Figures to the right indicate full marks.
- Use of scientific calculator is allowed.
- a) Attempt any six of the following.

- The root of the equation $x^3 x 4 = 0$ lies between
 - a) 0 and 1

b) 1 and 2

c) 2 and 3

d) 3 and 4

- $1 + \Delta =$
 - a) E⁻¹
 c) δ

b)V

- iii) If n values of f(x) are given, then Δⁿ f(x) is ---
 - a) n

c) 1

- iv) One of the normal equations for fitting a straight line y = a + bx is $\Sigma y_i = ...$
 - a) na+bΣx_i

- na bΣx_i
- c) $a\Sigma x_i + b\Sigma x_i^2$
- d) $na + b \Sigma x_i^2$
- Better approximate value of the real root of the equation f(x) = 0 by Newton Raphson method is given by $x_{n+1} =$
 - a) $x_n \frac{f'(x_n)}{f(x_n)}$
- b) $x_n + \frac{f(x_n)}{f(x_n)}$

c) $x_n - \frac{f(x_n)}{f'(x_n)}$

d) $x_n + \frac{f'(x_n)}{f(x_n)}$

vi) From the table

х	1	2	3	4
У	60	30	20	15

 $\sum x_i^2$ is

- a) 13
- c) 10

- b) 30
- d) 125
- vii) In Runge Kutta fourth order method $k_4 =$
 - a) $hf(x_0 + h, y_0 + k_2)$
- b) $hf(x_0 + h, y_0 + k_3)$
- c) $hf(x_0 + h, y_0 + k_1)$
- d) $f(x_0 + h, y_0 + k_3)$
- viii) In Euler's method $y_{n+1} = \dots$...
 - a) y_n

- b) $y_n + f(x_n, y_n)$
- c) $y_n + hf(x_n, y_n)$
- d) y_{n+1}
- b) Attempt any six of the following.
 - Define the central difference operator δ.
 - ii) Define the absolute error in r.
 - iii) $E^n y_k =$
 - iv) Runge Kutta Method of second order is the ---- method.
 - v) If the exact solution of the equation y = f(x,y) with y(x₀) = y₀, then Taylor's series expansion for y(x) about the point x = x₀ is y(x) =
 - vi) The iteration method is applicable to solve the equation $x = \phi(x)$ iff ...,
 - vii) Prove that $\Delta = E\nabla$.
 - viii) The problem of fitting a power function $y = ax^b$ is nothing but the problem of fitting a ----- by ----- method.
- Attempt any six of the following.

12

6

- Find the absolute error and relative error of the number 6.7 if both of its digits are correct.
- ii) With usual notations, prove that

$$\mu = \frac{1}{2} \left[E^{1/2} - E^{-1/2} \right]$$

- iii) State normal equations for fitting a second degree parabola $y = a + bx + cx^2$.
- iv) Obtain Newton Raphson formula for square root of N.
- v) State Runge Kutta fourth order formulae.
- vi) Find the normal equations for fitting a curve y = aebx.
- vii) Define the forward difference operator ∆ and backward difference operator ∇.
- viii) Find the first approximation of x for the equation $x = 0.21 \sin(0.5 + x)$ by iteration method starting with $x_0 = 0.12$.
- ix) Evaluate Δ^2 (ab^{cx}).
- 3. Attempt any four of the following.

12

- Find a real root of the equation x³ -4x-9=0 by bisection method. Perform three iterations
- ii) Show that

$$e^{x}\left(u_{0} + x\Delta u_{0} + \frac{x^{2}}{2!}\Delta^{2}u_{0} +\right) = u_{0} + u_{1}x + \frac{u_{2}x^{2}}{2!} +$$

iii) Fit a straight line y = a + bx to the data

X.	0	1	2	3
у	2	5	8	11

- iv) If y(1) = -3, y(3) = 9, y(4) = 30 and y(6) = 132. Find four point Lagrange's interpolation polynomial that takes the same value.
- Explain the iteration method for finding the real root of the equation f(x) = 0.
- vi) Show that $\Delta(\log(f(x)) = \log\left(1 + \frac{\Delta f(x)}{f(x)}\right)$.

4. Attempt any three of the following.

12

 Using Gauss's forward central difference formula, find the value of f (0.274) from the following table.

	X	0.25	0.26	0.27	0.28	0.29	0.30
1	(x)	4.000	3.846	3.704	3.571	3.448	3.333

- ii) Given $\frac{dy}{dx} 1 = xy$ and y(0) = 1. Obtain Taylor's series for y(x) and compute y(0.1) correct upto 4 decimal places.
- iii) Given the set of values

Х	10	15	20	25	30	35
у	19.97	21.51	22.47	23.52	24.65	25.89

From the difference table and write the values of $\Delta^2\,y_{10},\;\Delta\,y_{20},\;\Delta^3\,y_{15}$ and $\Delta^5\,y_{10}$.

iv) Fit a second degree parabola to the following data.

×	0	1	2	3	4
у	. 1	1.8	1.3	2.5	6.3

- Obtain the real root of the equation x³ 2x 5 = 0 by Regula Falsi Method.
- Attempt any two of the following.

12

- i) Using Runge Kutta second order method, find y (0.2) and y (0.4). Given that y = 1 at x = 0 for h = 0.2 and $\frac{dy}{dx} = \frac{y x}{v + x}$.
- ii) State and prove Gauss's backward central difference formula.
- iii) Explain Euler's modified method to solve the differential equation $\frac{dy}{dx} = f(x,y) \text{ with the initial condition } y(x_0) = y_0.$
