PHYSICS PAPER - II : PHY - 242 Optics (New) (24126)

P. Pages: 3

Time: Two Hours

Max. Marks: 40

Instructions to Candidates:

- 1. Do not write anything on question paper except Seat No.
- Answersheet should be written with blue ink only. Graph or diagram should be drawn with the same pen being used for writing paper or black HB pencil.
- 3. Students should note, no supplement will be provided.
- 4. All questions are compulsory and carry equal marks. Figures to the right indicates full marks.
- 5. Draw neat diagrams wherever necessary.
- 6. Use of logarithmic table or electronic calculator is allowed.

1. Attempt any eight of the follow	ving	llov	fol	the	of	ght	any	Attempt	1.	
------------------------------------	------	------	-----	-----	----	-----	-----	---------	----	--

8

- i) Deviation produced by a lens is independent of the
 - a) focal length of lens
- b) wavelength of light
- c) position of the object
- d) None of the above
- ii) Newtons rings are fringes of
 - a) equal thickness

- b) equal inclination
- c) unequal thickness
- d) None of the above
- iii) The condition for achromatism of two thin lenses of same material separated by a finite distance is
 - $a) \qquad x = \frac{f_1 + f_2}{2}$

- b) $x = \frac{w_1 f_2 + w_2 f_1}{w_1 + w_2}$
- c) $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \frac{x}{f_1 f_2}$
- d) $\frac{1}{f_1} + \frac{1}{f_2} = 0$
- iv) To get bright fringes (constructive interference) in the reflected part, the path difference must be
 - a) odd multiple of $\frac{\lambda}{2}$
- b) even multiple of $\frac{\lambda}{2}$
- c) odd multiple of λ
- d) None of these

V)	Po	larimeter is an instrume	nt used to me	easure of a substance.			
	a)	viscosity	b)	refractive index			
	c)	light intensity		optical activity			
vi)	Th	e bending of waves at th	ne ednes or o	orners of an obstacle is called			
	a)	interference	h)	diffraction			
	c)	polarization		refraction			
vii)	lf \	/e_is velocity of an extra	ı-ordinanı lid	ht and Vo is velocity of an ordinary			
	liah	nt in negative crystal the	n which of the	e following relation is correct.			
	a)	Vo > Ve	h) to normwi	Vo = Vo			
No.	1 2 2 2	Vo ≥ Ve		Vo = Ve Ve > Vo			
viii)	The	e optical path difference		돼 뭐 시구생생이 많다. 그는 그는			
A.	a)	$2\mu t \cos r - \frac{\lambda}{2}$	b)	$2\mu t \cos r + \frac{\lambda}{2}$			
	c)	2μtcosr+nλ	d)	2μtcosr – nλ			
ix)	In fr	esnel type of diffraction	the source o	f light and the screen must be			
	at a	distances from	the diffraction	na obstacle			
	a)	finite		infinite			
	c)	equal		None of the above			
x)	Frin	ges obtained in wedge-	shaped film a)re			
	a)	straight		circular			
	c)	elliptical		curved			
Atte	mpt a	any four of the following					
a)	Stat	e the conditions for obta	ining steady				
b)		at is chromatic aberratio					
c)		e any two applications o					
d)	What is meant by fringes of equal thickness?						
e)		e the Brewster's law.					
		. 19 1. H. H. Y. W. H. H. M.					
f)	Two Find	thin lenses of focal leng the focal length of com	ith 10cm and pination.	20cm are placed 5cm apart.			
				그는 마시아 가게 되는 사람들은 사람이 하시고 있다면 된 경험을 했다.			

2.

3. Attempt any two of the following.

8

- a) Prove the relation $\lambda = \frac{D_m^2 D_n^2}{4(m-n)\,R}$ where symbols have their usual meaning.
- b) Distinguish between Fresnel's diffraction and Fraunhoffer diffraction.
- c) Give the construction and theory of quarter wave plate.
- 4. a) Attempt any two of the following.

6

- i) Explain negative type of crystal.
- ii) Explain rectalinear propagation of light.
- iii) Obtain an expression for deviation produced by a thin lens.
- b) Define optical activity of a substance.

2

5. a) Attempt any one of the following.

6

- i) Obtain an expression for focal length of combination of two thin lenses separated by a finite distance.
- ii) Give the theory of plane transmission grating.
- b) Define the term plane polarized light.

2
