

MATHEMATICS PAPER - I: MTH-231 Calculus and Several Variables (231101)

P. Pages: 4

Time: Two Hours

Max. Marks: 60

Instructions to Candidates:

Do not write anything on question paper except Seat No.

- 2. Graph or diagram should be drawn with the black ink pen being used for writing paper or black HB pencil.
- Students should note, no supplement will be provided.
- All questions are compulsory.
- Figures to the right indicate full marks.
- a) Attempt any six of the following.

i)
$$(x,y) \xrightarrow{lim} (0,0) \frac{x-a}{y-b}$$
 along the path y= 0 is -----

a) 0

c) $\frac{a}{b}$

- None of these. d)
- ii) If $x=r\cos\theta$, $y=r\sin\theta$ then $\frac{\partial(x,y)}{\partial(r,\theta)}$ is -----

c) r

b) 0 d) None of these

iii) If
$$u = \sin^{-1}(\frac{x^2 + y^2}{x + y})$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ----$.

a) tan u

b) cot u

c) sin u

- None of these d)
- iv) If u = f(x, y) and $x = \phi(t)$, $y = \psi(t)$ then u is a composite function of --
 - a) x

c) y

d) None of these

	v)	If $f(x,y) = x^2 - 2y^2 + 1$ then f has extreme value at			
			d)	(0,0) None of these	
	vi)	vi) Maclaurin's theorem for a function of two variables obtain from Taylors Theorem by putting			
			b) d)	a=x, b=y, h=0, k=0 None of these	
	vii)	$\int_0^1 \int_0^1 dx dy =$			
		a) 1	b)	$\frac{1}{2}$	
		c) -1	d)	None of these	
	viii)		tained b) d)	d by evaluating Double integral None of these	
b)	Atte	mpt any six of the following.			
	i)	ii) Give formula for finding approximate value.			
	ii)				
	iii) If $u = f(x, y)$ and $x = \phi(t)$, $y = \psi(t)$ then the chain rule for $\frac{du}{dt} = \frac{1}{t}$. iv) What is the degree of homogeneous function $f(x, y) = \left(\frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x^{\frac{1}{3}} + y^{\frac{1}{3}}}\right)^{\frac{1}{2}}$ v) Write the condition for critical point (a, b) to be a saddle point.				
	vi)	Write the remainder term in Taylor's theorem for a function of two variables after n terms.			
	vii)	i) Is the point $(\frac{3a}{2}, \frac{3a}{2})$ lies on the curve $x^3 + y^3 = 3axy$?			
	viii)	Define double integral.			
2.	Attempt any six of the following.				12
	i)	Evaluate $(x, y) \rightarrow (0, 0) \frac{xy^3}{x^2 + y^6}$			2
गुरु - 033			2		

- ii) If $u = x \log(xy)$ then show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{1}{y}$
- iii) Discuss for continuity the function $f(x,y) = \frac{x^2y}{x^4 + y^2}$, $(x,y) \neq (0,0)$ $f(0,0) = 0^{\circ}$ at (0,0)
- iv) If u = f(y z, z x, x y) then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
- v) State mean value theorem for function of two variables.
- vi) Expand x y in powers of (x-1) and (y+2).
- vii) State necessary condition for an extremum.
- viii) Change the order of integration of $\int_0^a \int_x^a \frac{x}{\sqrt{x^2 + a^2}} dx dy$
- ix) Discuss about axes intersection for the curve $x^2(x^2 + y^2) = a^2(y^2 x^2)$
- 3. Attempt any four of the following.
 - Show that the function $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$, if $x^2 + y^2 \neq 0$ is not differentiable at (0,0)
 - ii) Find approximate value of $\sqrt{(3.012)^2 + (3.997)^2}$.
 - iii) Verify Euler's theorem for $f(x,y) = ax^2 + 2hxy + by^2$
 - iv) If $f(x,y) = x^2y + 2xy^2$, show that the value of θ in the expression of MVT applied to the line segment joining the points (1,2) to (3,3) satisfies the equation $12\theta^2 + 30\theta 19 = 0$
 - v) Expand xy at (1,1) up to terms of order 3.
 - vi) Find the area of the circle $x^2+y^2=25$.

12

12

12

4. Attempt any three of the following.

- State and prove necessary condition for differentiability.
- ii) Let $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$, $(x,y) \neq (0,0)$. show that for the function f(x,y) both repeated limits exist but simultaneous limit does not exist.
- iii) If W=f(u,v) is a differentiable function of u and v and $u = \phi(x,y)$, $v = \psi(x,y)$ are differentiable functions of x and y then prove that the composite function $W = f(\phi(x,y),\psi(x,y))$ is a differentiable function of x and y and its first partial derivatives are given by

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \cdot \frac{\partial v}{\partial x} \text{ and } \frac{\partial w}{\partial y} = \frac{\partial w}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial w}{\partial v} \cdot \frac{\partial v}{\partial y}$$

- Divide 24 into three positive numbers such that their product is maximum.
- v) Evaluate $\int_{x=0}^{1} \left\{ \int_{y=0}^{2} \left[\int_{z=0}^{2} x^{2}yz dz \right] dy \right\} dx$
- 5. Attempt any two of the following.
 - i) If $u = \sin^{-1} \sqrt{x^2 + y^2}$ then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \tan^3 u \, .$
 - ii) State and prove Taylor's theorem for the function f(x, y).
 - iii) Evaluate $\iiint (x+y+z) dx dy dz$ over the tetrahedron x=0, y=0, z=0 and x+y+z=1
